
1

Finding the speed to innovate

Few executives would argue that speed and
innovation are critical success factors in today’s
digital world. Being able to innovate quickly and
cheaply, test digital products and services in the
market, refine them, and release them on a regular
basis has become a competitive advantage. But how
can companies do it consistently and succeed with
their digital products and services at scale?

While many companies have been trying new methods
to get there, two complementary lean capabilities are
showing great promise: the integration of product
development with IT operations (commonly referred
to as DevOps), and a focus on continuous delivery.
Both emphasize automation, continuous monitoring,
and sharing of information and processes across
product-development and IT operations groups to
enable the frequent release of small internal software
updates (see sidebar, “What are continuous delivery
and DevOps?”).

Both capabilities can greatly increase companies’
speed to market (cutting product-testing times
from weeks to minutes) while significantly reducing
the cost of delivering new products and services.
They can help to ensure higher-quality software,
better rates of customer adoption, and fewer risks
in product and service delivery. Indeed, these
capabilities can become a true engine for innovation.

Leading technology companies have been early
adopters of these capabilities and have reaped the
benefits. Facebook, for instance, releases millions
of lines of code and implements hundreds of small
changes to its website daily without downtime.
And Amazon can release code every ten seconds or
so, update 10,000 servers at a time, and roll back
website changes with a single system command.

A number of nontech companies have also successfully
explored and built up capabilities in continuous

Companies can test and launch digital products and services faster, and at lower cost, by integrating
their product development and IT operations, also known as DevOps.

Satty Bhens, Ling Lau, and Shahar Markovitch

© Colin Anderson/Getty Images

A P R I L 2 0 1 5

B u s i n e s s T e c h n o l o g y O f f i c e

2

delivery and DevOps. One international travel
company facing disruption from online competitors
was able to introduce new features to its website more
quickly and efficiently by moving software and systems
to the cloud, fully automating testing and provisioning
of servers, and rolling out a one-click software-
deployment process. In another case, a large financial
institution is using a continuous-delivery approach to
streamline its product testing and go to market quickly
with new digital services; processes that once took days
to complete now take minutes.

But while a range of companies are experimenting
with DevOps and continuous delivery, few are
capturing their full value. Legacy IT systems,
antiquated technologies, complex system and
project-management processes, and uncoordinated
actions by disconnected teams are undermining
even the most determined business leaders.

In our experience, the companies that are
implementing these software-development approaches
most successfully have avoided investing large sums of
money to move their entire technology infrastructure
to the cloud in one “big bang.” Instead they have
adopted a more deliberate approach, building their
capabilities step by step and funding further changes
and process improvements through the resulting
savings and efficiencies. In this article, we consider
the three main stages for building capabilities in
continuous delivery and DevOps—simplify, scale, and
sustain—as well as the cultural changes required to
reap the most value from these lean approaches.

Implementing DevOps and continuous delivery
For most companies, software development and
rollout involve a period of iteration, a period in which
all changes are “frozen” (that is, no more development
is allowed), and a period during which all software

Takeaways

Innovating quickly and cheaply, testing digital products and services, refining them, and releasing them regularly has
become a competitive advantage in today’s digital world.

How can companies do this and succeed with their digital products and services at scale? Two promising approaches may
help: integrating software-development functions with IT operations (DevOps) and focusing on continuous delivery of small
software upgrades.

Capabilities can be developed in three stages: simplify, scale, and sustain. Companies should create high-quality units of
code that are tested early and often, pursue automation opportunities in the highest-value areas of the company, and move
technologies and products to cloud-based virtualized environments.

What are continuous delivery and DevOps?
Continuous delivery accelerates
the time to market of new software
features through an investment in
automation of testing, deployment,
and infrastructure. This differs from
the traditional approach, which often
encourages the organization to defer
new features and fixes into a single “big
bang” release. Continuous delivery
dramatically reduces the incremental
cost for each software release; smaller

releases happen early and often to
provide more timely feedback from
customers to the product team.

DevOps is a cross-functional
approach that integrates development
and IT operations into a product-
oriented culture. The DevOps culture
embraces automation, monitoring,
and sharing to enable continuous
delivery. Historically, development and

operations teams have worked in
silos and often with opposing priorities.
DevOps promotes joint ownership of
a technology product by integrating
these groups into a single functioning
team to improve response times.
DevOps is largely a by-product of the
cloud revolution, which created a view
of “infrastructure as code” that has
blurred the lines between coders and
infrastructure teams.

3

changes across the organization are integrated into
one package and reviewed for weeks by a large team
of testers. In parallel, a separate team sets up the
supporting technology infrastructure, a process that
can take a few weeks. The release is deployed only
after all these steps are completed. Even with this
lengthy process, buggy software often results.

Given this difficult undertaking, most companies
will release major internal software changes only a
few times a year. But, as the company examples cited
above suggest, DevOps and continuous-delivery
models can help streamline the development of
digital products and services and improve time
to market. We have identified three main success
factors for adopting these lean approaches.

Stage 1: Simplify
Companies need to create a “single source of
truth” for all software: one repository for storing,
versioning, and tracking all source code. The
mainline version of code can then be accessed
quickly and reliably. For this approach to be most
effective, developers must submit code changes
frequently to the repository, which reduces the size
of the code to be reviewed by peers as well as the
complexity of merging parallel code changes.

Simultaneously, the organization should be
committed to developing high-quality code—units
that are modular, simple, and easy to maintain.
Adopting “test-driven development”—the process
of writing automated tests for code before actually
writing the code itself—is an important step.
Specifically, teams should focus initially on testing
simple and discrete units of code, eventually
expanding to more complex, integrated functions. To
ensure that developers adhere to quality guidelines,
the best companies perform complexity analyses,
which measure the integration and logic factors
associated with units of code and have a well-honed
peer-review process to identify poorly written code
so it can be corrected quickly. Google’s engineers, for
instance, send their code to a large distribution list

across the company, and randomly selected peers
review the code and post comments to the entire list.

Setting up this first stage does not require significant
resources. We have seen companies make progress
simply by reassigning one or two talented developers,
implementing a handful of automation programs, and
relying on vendors for monitoring and support. In many
cases, companies will already have the technologies
(such as source control, test control, and test automation)
in-house and can supplement them with good, open-
source software. One international hotel company
consolidated its sales and catering systems by moving
to a single version-control repository, integrating
software code twice a day, and insisting that developers
write automated tests for new units of change in their
code. As a result, the company was able to reduce its
time to market with new software by about 25 percent.

Stage 2: Scale
It can be a long and expensive task to scale up and
build out fully automated IT systems that have a
mix of modern and legacy technologies. Focusing
on the highest-value automation opportunities is
the most productive way forward. Customer-facing
components—for instance, mobile applications and
e-commerce websites—are usually the highest priority
for most companies; they generally also experience the
highest rate of change and innovation. To support these
opportunities, developers should incorporate into their
IT architectures sophisticated automated testing, such
as verifying an end-to-end customer journey. They
should also use performance tests that aim to measure
the system under load or stress, and security tests that
seek to measure its resilience against malicious attacks.
Every “merge” of new code into the mainline source
code should trigger these tests and the deployment of
the latest code to low-risk test environments.

An important by-product of this approach is
transparency into the status of the mainline code and
the overall quality of the code base. The automated
reports can offer managers insights that can help them
continually improve planning, resource utilization,

4

and even product and service quality (for example, by
measuring conversion rates for use of specific products
and services) and issue resolution (for instance, by
identifying root causes of technology failures).

One large corporate bank moved to continuous
delivery as part of a larger initiative to digitize its
customer processes—aiming, for instance, to simplify
corporate lending and customer onboarding. The
company sought to automate the deployment of new
software to test environments. Full-time testers
worked shoulder to shoulder with developers to
manually test the more complex transactions as
a complement to the simpler transactions. Once a
feature was completed, it was transferred to the test
environment in just minutes. Any bugs identified were
returned to the developers to be fixed that same day.
Through its use of a continuous-delivery model, the
bank was able to develop fully tested software releases

within one week compared with the six weeks it had
taken previously. The overall quality and predictability
of those releases were vastly improved as well.

Stage 3: Sustain
While companies can often gear up to change their
software-development processes in one big burst, this
all-hands-on-deck approach is rarely sustainable—
hence the appeal of continuous delivery (exhibit).
However, the pursuit of continuous delivery needs to be
easy for staffers to follow and ingrained in the culture
to maintain its value. This means systematically
moving technologies and products to cloud-based
virtualized environments, with software automation
in place to fully control the server and technology
infrastructure, scale, and quality. One international
consumer-goods company migrated its software to the
cloud so it could give developers self-service access to
production-like environments for testing, delegate the

Exhibit Continuous software delivery can increase companies’ speed to market with

high-quality digital products and services.

MoBT_38
Finding the speed to innovate
Exhibit 1 of 1

Traditional software delivery

Time to delivery

Quality and
testing

Software
deployment

Monitoring and
support

Infrastructure
setup

Internal software release once
every 3–6 months

Manual testing of up to 50% of
software releases performed by
large teams

Manual deployment of software
can take 30–50 individual steps;
limited success

Reactive software-monitoring
issues, downtime reported to users
in hours, days

Infrastructure setup can take
3–4 weeks or longer, manual and
highly error-prone process

Continuous software delivery

Internal software release multiple times
a week (or daily)

Automated testing with more than 80%
coverage requires limited human intervention
to validate

Fully automated deployment of software
one-click process can launch more than
50 steps at a time

Proactive software health–monitoring
issues, downtime reported to users in seconds,
preventive actions taken at defined thresholds

Automated provisioning of new
infrastructure setup and configuration in
less than 10 minutes end to end

 Source: McKinsey analysis

5

execution of thousands of automated tests to “virtual
servers” that take seconds to run, and adjust servers
automatically to support spikes in traffic based on
seasonality and multimarket demands.

Migration of software to the cloud gives companies
an opportunity to simplify their IT architectures
and introduce new technologies (middleware, for
instance) and capabilities (A/B testing, for example)
without affecting legacy systems.1

Companies can take advantage of cloud-based
environments and use automation extensively—some
companies even choose not to release features if at least
80 percent of the code is not covered by automated
testing. Failures can be rolled back in seconds, allowing
fixes to be made without putting significant parts of
the business at risk. Developer work flows are also
automated to allow one-click software releases in
seconds, not hours. Organizations can continuously
release software to production with limited reliance
on human intervention, and changes can be verified
and released with a high degree of confidence.

As a company’s continuous-delivery capabilities mature,
it can shift its focus from automating development work
flows to improving system scalability, resilience,
and disaster recovery, as well as optimizing the
monitoring and logging of systems to better track
customer and system performance. Product teams
can learn and make decisions quickly based on data
that affect the customer experience and performance.

It’s about more than technology
To move toward DevOps and continuous delivery,
companies cannot focus solely on revamping tools
and technologies. They must treat the initiative as a
change program requiring an updated culture. The
CIO and other business leaders must commit resources
and time that go far beyond forming committees
and attending more meetings. Shifting to this way of
working requires a new organizational model, though
which particular one depends on a company’s specific
situation. Some organizations have set up a model

similar to a center of excellence, in which a separate
DevOps team is created and used to embed capabilities
inside teams, build and expand capabilities, set
standards, and capture and disseminate best practices.
Other organizations embed DevOps champions within
application-development teams. Whatever the model,
in our experience, a successful transformation requires
the following ingredients:

Be clear about the change, and set high aspirations.
Senior leaders should create a compelling vision
of where the organization needs to go, provide
resources for a change program, lay out a road map,
and put in place clear measures of success. A change
program should articulate a new operating model
for how teams work together, including who has
decision rights and what process checks are needed.
A road map should include the assignment of people
with specific responsibilities, a plan for building
capabilities, and the identification and sequencing
of architecture and tool changes. Goals should be
bold but specific—for instance, reducing time to
market from months to days, or rolling out releases
in seconds, not hours. One logistics company set a
high bar—to transform its entire technology delivery
process within a year—and communicated it widely.

Create incentives that are aligned with
business outcomes.
The incentives associated with the successful use of
DevOps and continuous-delivery approaches need to
be aligned with designated business outcomes—for
instance, revenue targets, conversion rates, customer-
engagement scores, product-quality metrics, and
time-to-market figures—and should be shared by the
entire team. Too often we see that the development
group and business have different incentives—the
latter is focused on revenues while the former is
worried about delivery times. Similarly, there is often
a disconnection between the development group and
the operations team, which will necessarily be fixated
on up-time and ticket management. Incentives should
motivate and reward complete teams rather than
individual functions.

6

Create a ‘single team’ mind-set.
To deliver on the promise of DevOps and continuous
delivery, coders and infrastructure teams must work
in lockstep. That requires infrastructure, operations,
and developer team members to work side by side
using the same agile software process of iterative
planning, development, and testing. During a
12-month transformation, the CIO of a technology
service provider moved 500 full-time employees in
operations physically closer to the engineering team
to enable agile software development. The company
also trained IT employees in new delivery methods.
This allowed the organization not only to become
more efficient but also to significantly reduce the
time it took to roll out service changes to end users.

Build a continuous-improvement and data-
driven culture.
It’s not enough to release great software code once;
high-performing companies do it continually. That
requires teams to collect and interpret data and
customer feedback, adapt code, and redeploy in
near-continuous cycles. To do this quickly, teams
need transparency and easy-to-understand metrics
so they can understand exactly how the program is
performing. One bank created such transparency by
integrating critical site traffic, customer-performance
metrics (such as number of visitors and digital-sales
figures), and site-operations metrics into an online
dashboard that was projected on 60-inch LCD screens
across the room where the digital team was located.
The visual metrics made it easier for teams to spot
early indicators of lagging performance; errors were
reduced by 25 percent over a few months.

Build the right capabilities.
As infrastructure and operations teams shift from
executing manual steps to writing software code to
automating processes, new skills and experience will
be required. Some of the more important ones include
the ability to write software code and test automation;
experience with new tools, programming languages,
and development-work-flow automation; experience
with agile development; and collaborations with

software-development groups and business.
Organizations that were “born digital” may be able
to look in-house for people with these skills, but most
companies are being forced to look outside for help.

Speed and innovation are the hallmarks of a
successful company in the digital age. To get there,
companies should consider adopting an agile-
software-development culture that goes beyond
delivering one-time results to continuously adapting
and growing over time.

The authors would like to thank Steve Jansen for his
contributions to this article.

Satty Bhens is a digital partner at McKinsey Digital Labs
and is based in McKinsey’s New York office, Ling Lau is
a digital manager at McKinsey Digital Labs and is based
in the San Francisco office, and Shahar Markovitch is a
principal in the Tel Aviv office.

Copyright © 2015 McKinsey & Company.
All rights reserved.

1	For more, see Oliver Bossert, Chris Ip, and Jürgen Laartz,
“A two-speed IT architecture for the digital enterprise,” December
2014, mckinsey.com.

