
How predictive analytics can boost
product development

Complex product-development projects are plagued by schedule slips and cost overruns.
The up-front application of advanced and predictive analytics helps companies build plans
they can stick to.

Arjun Balaji, Raghavan Janardhanan, Shannon Johnston, and Noshir Kaka

© MEHAU KULYK/SCIENCE PHOTO LIBRARY/Getty ImagesAUGUST 2018 • HIGH TECH

2 How predictive analytics can boost product development

teams are often surprised by the combined impact of
all the features and performance targets and the cost
of integration into a finished product. Engineering
intuition tends to be linear, while the cumulative
effect of increasing performance, features, and
quality is highly nonlinear.

The second root cause is overestimating the
productivity of the development team. Planners tend
to assume that the issues that befell their previous
project would be cured and that no new issues would
crop up. They assume that specifications will not
change and that resources will be available when
needed. In practice, of course, such problems do
affect almost every project.

How predictive analytics can help
Until recently, even companies that understood and
sought to address these issues didn’t have effective
tools for doing so. Conventional complexity metrics,
like counting lines of code, story points, or function
points (FPs) in software development, are difficult
to estimate before the start of a project, especially
one that requires many sprints from many teams to
complete. Story points, by their nature, are qualitative
and team specific, making estimation difficult when
multiple teams are working on the same release.
By their very nature, FPs focus only on function
and not the actual effort drivers associated with
implementation and validation, thereby leading to
inaccuracies of greater than 60 percent in more than
50 percent of projects that use FP-based estimates.1
And traditional methods often fail to account for
other external factors, like the programming and
development styles adopted by the development team,
multisite development, and the impact of challenges
the team is facing for the first time.

Today, some companies are adopting a new approach,
one that uses powerful data analysis and modeling
techniques to bring new clarity to the estimation
of project-resource requirements. At its heart, the
new approach relies on the fact that, while every

R&D projects are inherently unpredictable. When
embarking on efforts to design complex things,
companies often have little idea how long a project
will take, what it will cost, or what they’ll finally
be able to deliver to the end customer. Their
initial project plans are sometimes no more than
educated guesswork.

For example, in an analysis of more than 1,800
completed software projects, we found that only
30 percent of them met their original delivery
deadline and one in five of these did so by removing
or deferring feature content. The average overrun
is around 25 percent of the originally planned
schedule. The performance of a sample of over
1,600 integrated-circuit-design projects was even
more telling. Over 80 percent of those projects were
late, and the average overrun was nearly 30 percent.
Moreover, those projects were almost as likely to
suffer an 80 percent overrun as they were to finish
on time.

Delays, and the extra resources needed to counter
them, mean higher costs too. The average budget
overrun experienced by a group of factory-
automation-software projects we studied was more
than 10 percent. A fifth of those projects cost over
50 percent more than originally expected. Then
there are the indirect costs. Delayed launches mean
lost sales, opportunities for competitors to get
ahead, and potentially damaged reputations.

The underlying causes of overruns
We’ve spent more than a decade investigating
the root causes of R&D scheduling and budget
challenges. In that time, we’ve interviewed
hundreds of project stakeholders, including
executive managers, technical leaders, and program
and project managers. They highlight many issues
that boil down to two primary root causes.

The first root cause is underestimating the
complexity of the project. Managers and engineering

3How predictive analytics can boost product development

development project is unique, the underlying
complexity drivers across projects are similar
and can be quantified. If companies understand
the complexity involved in a new project, they
can estimate the effort and resources required to
complete it (Exhibit 1).

Doing that is harder than it sounds. Companies must
collect a significant amount of data to determine
what factors really impact project effort. But for
practical reasons, the only useful factors are ones
easily measured, consistently gathered, and known
early enough to drive budget and planning decisions.

Exhibit 1

Numetrics complexity-
unit measure

Story points

● Qualitative, not quantitative; therefore, benchmarking
not possible

● Even measurements of same team require many iterations

Function points

● Effort intensive; often requires dedicated resource to create
and track; therefore, hard to scale throughout organization

● Dif�cult to do early external benchmarking (prior to
architectural design), and generally cumbersome for bench-
marking due to variations in function-point methods (eg,
COSMIC, IFPUG, adjusted function point, Proprietary,
Nesma, Mark-II)

● By itself, not accurate enough for estimation because
the method ignores factors that drive implementation effort
and other factors (eg, team skill, tools used, hardware
linkages, interfaces)

Use-case points

● Use cases are primarily a method of specifying customer
requirements (vs classic Word document, business-
requirements document, etc)

● Use-case points are qualitative weights based on
personal experience; therefore, no benchmarking/
standardization

● Use cases by themselves are insuf�ciently accurate for
planning; some are big, others are small, etc

● Accepts stories, use
cases, customer require-
ments, and function
points as primary inputs,
and automatically sizes
them by also considering
≥20 measures (some
optional) to improve
accuracy

● Useful for benchmarking
and planning because
of standardization of
inputs, common
predictive models, and
a large industry database
of projects

● More holistic consider-
ation of parameters
that drive effort, leading
to higher estimation
accuracy (typically
±10% or lower) vs other
methods such as story
points/function points
(±30% or higher)

● Integrates seamlessly
with current methods
and tools that serve
as inputs to the
complexity calculation

A comprehensive complexity-unit measure solves for the limitations of
effort-estimation methods.

4

In addition, analytical models provide a powerful
new way to deal with constraints. A company can
model the resource requirements of multiple projects
scheduled to run concurrently, for example, to see if
there are any points where those projects will demand
more staff than it has available for a specific role.
With warning of such resource bottlenecks, it can
take appropriate action—adjusting the schedules to
separate the peaks in demand, bringing in contractors,
or outsourcing part of the work. Similarly, the models
will show if an aggressive budget or timeline can be
made achievable by adding more resources. And if
it can’t, the company can run what-if analyses to
evaluate the impact of dropping certain features or
simplifying performance requirements. That allows
a much more thoughtful, fact-based discussion, far
preferable to missed deadlines or being forced to
drop features at the last minute because they weren’t
finished in time for launch.

Predictive analytics at work
Predictive analytics have already have transformed
the outcomes of some high-value projects (Exhibit 2).
As an example, at one company, a project to create a
derivative of a newly released product was originally
expected to take just 300 person-weeks of effort. The
project’s planners arrived at this estimate on the basis
that 90 percent of the new design would be carried
over from its predecessor. When they reevaluated
the plan using analytic models, they found that the
project would actually take three or four times as
much effort. The difference arose because while the
amount of truly new work was small, it was widely
distributed and affected nearly every part of the
architecture. That meant significant extra testing
and integration work, which the analytical models
identified. Once the company understood the work
involved, it changed its plans, keeping the team that
developed the original product together to work on
the derivative, and ultimately delivering it on time.

In another example, a company had a tight deadline
to complete a new release for a big customer, with

Developing a set of models, then, relies on an array
of advanced analytics, machine learning, and
artificial-intelligence techniques to predict the
complexity and required development effort and
schedule in a reliable way. In software engineering,
for example, those models would need to understand
the complexity of the system requirements, the
architectures, the testing, and the potential
required interactions with hardware.

Because these complexity models are based on real
data, they don’t make unrealistic assumptions about
productivity. And their estimates automatically
incorporate the effects of the everyday delays and
disruptions that development teams must face. In
other words, they take into account not only the
complexity of the project (both the functional and
implementation aspects) but also the complexity of
the team environment.

These models can even identify the productivity
impact of changes to working methods. Larger
development teams are less productive than
small ones, for example, as they must expend more
effort on internal coordination and communication.
The introduction of new teams, new platforms,
or new development approaches can also hit
productivity in the short term, even if they are
intended to boost it over the long haul. With
enough industry data, however, the models can
see how these sorts of changes affected productivity
in the past and provide a good estimate of likely
future effects.

Better plans, smarter decisions
Armed with such models and a baseline of
productivity levels for similar projects, a company
can enter the current specification and develop
higher-integrity plans for new products. It can then
assess the risk of the current plan or create a more
realistic staffing plan along with a good budget
estimate and an achievable schedule.

How predictive analytics can boost product development

5

1	The use of function points in the industry, ISBSG, October 2016,
isbsg.org.

right number of the right people on their projects
at the right time, they also enjoy R&D-productivity
improvements of 20 to 40 percent. For companies,
that means lower costs and lower risks—a powerful
combination of benefits to have in a highly
competitive environment.

competitors vying for the work. The predictive
analytics models showed that with the company’s
current resources and project plan, it was going to
miss its delivery schedule by 50 weeks. That delay
would have caused it to miss the market window
and lose a $350 million opportunity. Spurred into
action by the finding, the company took steps to
reduce the complexity of its design and prioritize
the scope of the effort, resulting in a project that met
the customer’s minimum requirements and could be
delivered on time.

Organizations that apply analytics and predictive
tools to their product-development and project-
planning processes see a dramatic reduction in
schedule slippage. And because they can put the

Exhibit 2

Typical impact of predictive-analytics planning

Source: Numetrics by McKinsey

Predictive-analytics-driven planning has delivered a range of positive
impact on software projects.

Normalized feature output
per person-hour, % increase

Variance from schedule
plan, % reduction

Defects per line of code,
% reduction

+20 to
+40

–60 to
–90

–30 to
–40

100

Before After Before After Before After

100 100

Arjun Balaji is a partner in McKinsey’s Bengaluru office,
Raghavan Janardhanan is a partner in the Chennai
office, Shannon Johnston is a specialist in the Toronto
office, and Noshir Kaka is a senior partner in the
Mumbai office.

Designed by Global Editorial Services.
Copyright © 2018 McKinsey & Company.
All rights reserved.

How predictive analytics can boost product development

