
How predictive analytics can boost 
product development

Complex product-development projects are plagued by schedule slips and cost overruns. 
The up-front application of advanced and predictive analytics helps companies build plans 
they can stick to.
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teams are often surprised by the combined impact of 
all the features and performance targets and the cost 
of integration into a finished product. Engineering 
intuition tends to be linear, while the cumulative 
effect of increasing performance, features, and 
quality is highly nonlinear.

The second root cause is overestimating the 
productivity of the development team. Planners tend 
to assume that the issues that befell their previous 
project would be cured and that no new issues would 
crop up. They assume that specifications will not 
change and that resources will be available when 
needed. In practice, of course, such problems do 
affect almost every project.

How predictive analytics can help
Until recently, even companies that understood and 
sought to address these issues didn’t have effective 
tools for doing so. Conventional complexity metrics, 
like counting lines of code, story points, or function 
points (FPs) in software development, are difficult 
to estimate before the start of a project, especially 
one that requires many sprints from many teams to 
complete. Story points, by their nature, are qualitative 
and team specific, making estimation difficult when 
multiple teams are working on the same release. 
By their very nature, FPs focus only on function 
and not the actual effort drivers associated with 
implementation and validation, thereby leading to 
inaccuracies of greater than 60 percent in more than 
50 percent of projects that use FP-based estimates.1 
And traditional methods often fail to account for 
other external factors, like the programming and 
development styles adopted by the development team, 
multisite development, and the impact of challenges 
the team is facing for the first time. 

Today, some companies are adopting a new approach, 
one that uses powerful data analysis and modeling 
techniques to bring new clarity to the estimation 
of project-resource requirements. At its heart, the 
new approach relies on the fact that, while every 

R&D projects are inherently unpredictable. When 
embarking on efforts to design complex things, 
companies often have little idea how long a project 
will take, what it will cost, or what they’ll finally  
be able to deliver to the end customer. Their  
initial project plans are sometimes no more than 
educated guesswork.

For example, in an analysis of more than 1,800 
completed software projects, we found that only 
30 percent of them met their original delivery 
deadline and one in five of these did so by removing 
or deferring feature content. The average overrun 
is around 25 percent of the originally planned 
schedule. The performance of a sample of over  
1,600 integrated-circuit-design projects was even 
more telling. Over 80 percent of those projects were 
late, and the average overrun was nearly 30 percent. 
Moreover, those projects were almost as likely to 
suffer an 80 percent overrun as they were to finish 
on time.

Delays, and the extra resources needed to counter 
them, mean higher costs too. The average budget 
overrun experienced by a group of factory-
automation-software projects we studied was more 
than 10 percent. A fifth of those projects cost over  
50 percent more than originally expected. Then 
there are the indirect costs. Delayed launches mean 
lost sales, opportunities for competitors to get  
ahead, and potentially damaged reputations.

The underlying causes of overruns
We’ve spent more than a decade investigating 
the root causes of R&D scheduling and budget 
challenges. In that time, we’ve interviewed 
hundreds of project stakeholders, including 
executive managers, technical leaders, and program 
and project managers. They highlight many issues 
that boil down to two primary root causes.

The first root cause is underestimating the 
complexity of the project. Managers and engineering 
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development project is unique, the underlying 
complexity drivers across projects are similar 
and can be quantified. If companies understand 
the complexity involved in a new project, they 
can estimate the effort and resources required to 
complete it (Exhibit 1).

Doing that is harder than it sounds. Companies must 
collect a significant amount of data to determine 
what factors really impact project effort. But for 
practical reasons, the only useful factors are ones 
easily measured, consistently gathered, and known 
early enough to drive budget and planning decisions. 

Exhibit 1

Numetrics complexity-
unit measure 

Story points 

● Qualitative, not quantitative; therefore, benchmarking
not possible

● Even measurements of same team require many iterations

Function points

● Effort intensive; often requires dedicated resource to create
and track; therefore, hard to scale throughout organization

● Dif�cult to do early external benchmarking (prior to 
architectural design), and generally cumbersome for bench-
marking due to variations in function-point methods (eg, 
COSMIC, IFPUG, adjusted function point, Proprietary, 
Nesma, Mark-II)

● By itself, not accurate enough for estimation because 
the method ignores factors that drive implementation effort 
and other factors (eg, team skill, tools used, hardware 
linkages, interfaces)

Use-case points

● Use cases are primarily a method of specifying customer 
requirements (vs classic Word document, business-
requirements document, etc)

● Use-case points are qualitative weights based on 
personal experience; therefore, no benchmarking/
standardization

● Use cases by themselves are insuf�ciently accurate for
planning; some  are big, others are small, etc

● Accepts stories, use 
cases, customer require-
ments, and function 
points as primary inputs, 
and automatically sizes 
them by also considering 
≥20 measures (some 
optional) to improve 
accuracy

● Useful for benchmarking 
and planning because 
of standardization of 
inputs, common 
predictive models, and 
a large industry database 
of projects

● More holistic consider-
ation of parameters 
that drive effort, leading 
to higher estimation 
accuracy (typically 
±10% or lower) vs other 
methods such as story 
points/function points 
(±30% or higher)

● Integrates seamlessly 
with current methods 
and tools that serve 
as inputs to the 
complexity calculation

A comprehensive complexity-unit measure solves for the limitations of 
effort-estimation methods.
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In addition, analytical models provide a powerful 
new way to deal with constraints. A company can 
model the resource requirements of multiple projects 
scheduled to run concurrently, for example, to see if 
there are any points where those projects will demand 
more staff than it has available for a specific role. 
With warning of such resource bottlenecks, it can 
take appropriate action—adjusting the schedules to 
separate the peaks in demand, bringing in contractors, 
or outsourcing part of the work. Similarly, the models 
will show if an aggressive budget or timeline can be 
made achievable by adding more resources. And if 
it can’t, the company can run what-if analyses to 
evaluate the impact of dropping certain features or 
simplifying performance requirements. That allows 
a much more thoughtful, fact-based discussion, far 
preferable to missed deadlines or being forced to 
drop features at the last minute because they weren’t 
finished in time for launch. 

Predictive analytics at work
Predictive analytics have already have transformed 
the outcomes of some high-value projects (Exhibit 2). 
As an example, at one company, a project to create a 
derivative of a newly released product was originally 
expected to take just 300 person-weeks of effort. The 
project’s planners arrived at this estimate on the basis 
that 90 percent of the new design would be carried 
over from its predecessor. When they reevaluated 
the plan using analytic models, they found that the 
project would actually take three or four times as 
much effort. The difference arose because while the 
amount of truly new work was small, it was widely 
distributed and affected nearly every part of the 
architecture. That meant significant extra testing 
and integration work, which the analytical models 
identified. Once the company understood the work 
involved, it changed its plans, keeping the team that 
developed the original product together to work on 
the derivative, and ultimately delivering it on time.

In another example, a company had a tight deadline 
to complete a new release for a big customer, with 

Developing a set of models, then, relies on an array 
of advanced analytics, machine learning, and 
artificial-intelligence techniques to predict the 
complexity and required development effort and 
schedule in a reliable way. In software engineering, 
for example, those models would need to understand 
the complexity of the system requirements, the 
architectures, the testing, and the potential 
required interactions with hardware.

Because these complexity models are based on real 
data, they don’t make unrealistic assumptions about 
productivity. And their estimates automatically 
incorporate the effects of the everyday delays and 
disruptions that development teams must face. In 
other words, they take into account not only the 
complexity of the project (both the functional and 
implementation aspects) but also the complexity of 
the team environment.

These models can even identify the productivity 
impact of changes to working methods. Larger 
development teams are less productive than  
small ones, for example, as they must expend more 
effort on internal coordination and communication. 
The introduction of new teams, new platforms, 
or new development approaches can also hit 
productivity in the short term, even if they are 
intended to boost it over the long haul. With  
enough industry data, however, the models can  
see how these sorts of changes affected productivity 
in the past and provide a good estimate of likely 
future effects.

Better plans, smarter decisions
Armed with such models and a baseline of 
productivity levels for similar projects, a company 
can enter the current specification and develop 
higher-integrity plans for new products. It can then 
assess the risk of the current plan or create a more 
realistic staffing plan along with a good budget 
estimate and an achievable schedule.

How predictive analytics can boost product development
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1	The use of function points in the industry, ISBSG, October 2016, 
isbsg.org. 

right number of the right people on their projects 
at the right time, they also enjoy R&D-productivity 
improvements of 20 to 40 percent. For companies, 
that means lower costs and lower risks—a powerful 
combination of benefits to have in a highly 
competitive environment. 

competitors vying for the work. The predictive 
analytics models showed that with the company’s 
current resources and project plan, it was going to 
miss its delivery schedule by 50 weeks. That delay 
would have caused it to miss the market window 
and lose a $350 million opportunity. Spurred into 
action by the finding, the company took steps to 
reduce the complexity of its design and prioritize 
the scope of the effort, resulting in a project that met 
the customer’s minimum requirements and could be 
delivered on time.

Organizations that apply analytics and predictive 
tools to their product-development and project-
planning processes see a dramatic reduction in 
schedule slippage. And because they can put the 

Exhibit 2

Typical impact of predictive-analytics planning

Source: Numetrics by McKinsey

Predictive-analytics-driven planning has delivered a range of positive 
impact on software projects.
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