
Unleashing developer
productivity with
generative AI
A McKinsey study shows that software developers can complete
coding tasks up to twice as fast with generative AI. Four actions can
maximize productivity and minimize risks.

June 2023

© Getty Images

This article is a collaborative effort by Begum Karaci Deniz, Chandra Gnanasambandam, Martin Harrysson,
Alharith Hussin, and Shivam Srivastava, representing views from McKinsey Digital.

Technology leaders aiming to accelerate software
development can expect groundbreaking time
savings with generative AI. However, they’ll need
more than tooling to exploit the full potential of this
disruptive technology.

Our latest empirical research finds generative AI–
based tools¹ delivering impressive speed gains for
many common developer tasks (see sidebar, “About
the research”). Documenting code functionality for
maintainability (which considers how easily code
can be improved) can be completed in half the
time, writing new code in nearly half the time, and
optimizing existing code (called code refactoring)
in nearly two-thirds the time (Exhibit 1). With the
right upskilling and enterprise enablers, these
speed gains can be translated into an increase in
productivity that outperforms past advances in

engineering productivity, driven by both new tooling
and processes.

Yet, while a massive surge in productivity is
possible, our research finds time savings can
vary significantly based on task complexity and
developer experience. Time savings shrank to less
than 10 percent on tasks that developers deemed
high in complexity due to, for example, their lack
of familiarity with a necessary programming
framework. A similar result was seen among
developers with less than a year of experience; in
some cases, tasks took junior developers 7 to 10
percent longer with the tools than without them.

Using these tools did not sacrifice quality for speed
when the developer and tool collaborated. Code
quality in relation to bugs, maintainability, and

1	Includes both generative AI–based tools trained to have natural conversations through prompting and those trained specifically on code base
and embedded into a developer’s integrated development environment (IDE).

Exhibit 1
Generative AI can increase developer speed, but less so for complex tasks.

Task completion time using generative AI, %

Generative AI can increase developer speed, but less so for complex tasks.

McKinsey & Company

With generative AIWithout generative AI

Code generation Code refactoringCode documentation High-complexity tasks

100

20

40

60

80

0

<10

20–30

35–4545–50

2 Unleashing developer productivity with generative AI

readability (which is important for reusability) was
marginally better in AI-assisted code. However,
participant feedback indicates that developers
actively iterated with the tools to achieve that
quality, signaling that the technology is best used
to augment developers rather than replace them.
Ultimately, to maintain code quality, developers
need to understand the attributes that make up
quality code and prompt the tool for the right
outputs.

Together, these findings suggest that maximizing
productivity gains and minimizing risks when
deploying generative AI–based tools will
require engineering leaders to take a structured
approach that encompasses generative AI
training and coaching, use case selection,
workforce upskilling, and risk controls. In this
article, we share where generative AI shined in
our research, which tasks demanded developer
expertise, and what engineering leaders can
do to ensure the most effective use of this
burgeoning technology.

Where generative AI shined
In our study, we assigned developers some garden-
variety tasks that software teams do regularly:
refactor a piece of code into microservices to
improve maintainability and reusability, build new
application functionality to elevate the customer
experience, and document code capabilities so
future changes are easier.

Across these tasks, our research finds generative
AI–based tools enable tremendous productivity
gains in four key areas:

	— Expediting manual and repetitive work.
Generative AI can handle routine tasks such as
auto-filling standard functions used in coding,
completing coding statements as the developer
is typing, and documenting code functionality
in a given standard format, based on the
developer’s prompt. In doing so, these tools can
free developers to solve more complex business
challenges and fast-track new software
capabilities.

About the research

To understand the impact of generative AI–based tools on developer productivity, we set up a lab with more than 40 McKinsey devel-
opers who are located across the United States and Asia and have different amounts of software development experience. This lab will
serve as an ongoing test bed to understand developments in the industry, including the impact of new tools and developments in existing
tools.

For this report, participants were asked to perform common software development tasks in three areas—code generation, refactoring,
and documentation—over the course of several weeks. Each task was performed by a test group that had access to two generative AI–
based tools and a control group that used no AI assistance. Each developer participated in the test group for half of the tasks and in the
control group for the other half.

We collected data in different formats. A demographics survey was used to gauge their years of experience, expertise, and prior knowl-
edge. For measuring time spent on each task, participants recorded start time, end time, and break times. Task surveys after each
task captured perceived complexity of the task and developer experience. Judge evaluations during code demos were used to identify
successful submissions. Automated reviews of code quality using an open-source platform assessed code readability and maintainabil-
ity and detected bugs. And a post-experiment survey gathered insights on participants’ impressions of the tools and experience across
tasks.

3Unleashing developer productivity with generative AI

	— Jump-starting the first draft of new code.
When facing a blank screen, developers
with generative AI–based tools can request
suggestions by entering a prompt in a
separate window or within the integrated
development environment (IDE) they use
to develop software. Developers who did
so reported that the generative AI–based
tools provided helpful code suggestions.
This enabled them to escape writer’s block
so they could get started more quickly. As
one participant shared, the tools enable
developers to get in the “flow” sooner.

	— Accelerating updates to existing code.
Participants also reported that when using
these tools with effective prompting, they
could make more changes to existing code
faster. For instance, to spend less time
adapting code from an online coding library
and improving prewritten code, developers
would copy and paste it into a prompt and
submit iterative queries requesting the tool to
adjust based on the criteria they provided.

	— Increasing developers’ ability to tackle
new challenges. While developer time
savings with generative AI–based tools
were more modest for complex tasks, our
research still finds benefits: the technology
can help developers rapidly brush up on
an unfamiliar code base, language, or
framework necessary to get the job done.
Furthermore, when developers face a new
challenge, they can turn to these tools
to provide the kind of help they might
otherwise seek from an experienced
colleague—for example, explaining new
concepts, synthesizing information (say,
by comparing and contrasting code from
different repositories), and providing step-
by-step guides on how to use a framework
so they can do the work. Thus, developers
using generative AI–based tools to perform
complex tasks were 25 to 30 percent
more likely than those without the tools to
complete those tasks within the time frame
given (Exhibit 2).

Exhibit 2
Developers using generative AI to assist with complex tasks were more likely
to complete those tasks within a given time frame.

Task completion within allotted time
by perceived complexity, %

Improvement, %

Developers using generative AI to assist with complex tasks were more likely
to complete those tasks within a given time frame.

McKinsey & Company

Low

Medium

High

~0

10–15

25–30

54

42

83

73

94

92

With generative AI
Without generative AI

4 Unleashing developer productivity with generative AI

The benefits go beyond these productivity
improvements. The research finds that equipping
developers to be their most productive also
significantly improves the developer experience,
which in turn can help companies retain and excite
their best talent. Developers using generative
AI–based tools were more than twice as likely to
report overall happiness, fulfillment, and a state
of flow (Exhibit 3). They attributed this to the tools’
ability to automate grunt work that kept them from
more satisfying tasks and to put information at their
fingertips faster than a search for solutions across
different online platforms.

Which tasks demand developer
expertise
Generative AI technology can do a lot, but our
research suggests that the tools are only as good as
the skills of the engineers using them. Participant
feedback signaled three areas where human
oversight and involvement were crucial:

	— Examining code for bugs and errors.
Research participants reported that, at
times, generative AI–based tools provided
incorrect coding recommendations and
even introduced errors in the code. During
one task, a developer noted she had to
input numerous prompts to correct a tool’s
erroneous assumption so she could get an
answer to a question. In another case, a
developer shared that he had to “spoon-feed”
the tool to debug the code correctly.

	— Contributing organizational context.
While off-the-shelf generative AI–based
tools know a lot about coding, they won’t
know the specific needs of a given project
and organization. Such knowledge is vital
when coding to ensure the final software
product can seamlessly integrate with
other applications, meet a company’s
performance and security requirements, and
ultimately solve end-user needs. As research

Exhibit 3
Generative AI tools have potential to improve the developer experience.

I felt happy
I was able to focus on
satisfying and meaningful work I was in a ‘�ow’ state

Without
generative AI

With
generative AI

Without
generative AI

30

25

30

15

13

38

50

15

5

30

30

20

13

56

31

20

20

30

25

65

50

44

With
generative AI

Without
generative AI

With
generative AI

Agreement with statement,
% of respondents

Note: Figures may not sum to 100%, because of rounding.

Generative AI tools have potential to improve the developer experience.

McKinsey & Company

Strongly
disagree

Somewhat
disagree

Neither agree
or disagree

Somewhat
agree

Strongly
agree

5Unleashing developer productivity with generative AI

participants pointed out in their feedback, it will
be up to software developers to provide these
tools with the context via prompting, including
how the code will be used and by whom, the
types of interfaces and other systems the
software will interact with, the data used, and
more.

	— Navigating tricky coding requirements.
Participant feedback also suggests generative
AI–based tools are better suited for answering
simple prompts, such as optimizing a code
snippet, than complicated ones, like combining
multiple frameworks with disparate code logic.
One participant shared that to obtain a usable
solution to satisfy a multifaceted requirement,
he first had to either combine the components
manually or break up the code into smaller
segments. As another participant explained,

“[Generative AI] is least helpful when the problem
becomes more complicated and the big picture
needs to be taken under consideration.”

What do these findings mean for
technology leaders?
Given these findings, what can technology
leaders do to translate these time savings and
quality improvements into real productivity gains
while minimizing risk when using generative AI in
software development? Our research participants’
experience suggests starting with four priorities:
skill development, pursuing advanced use cases,
planning for skill shifts, and risk management.

Provide developers with generative AI training
and coaching
For developers to effectively use the technology
to augment their daily work, they will likely need
a combination of training and coaching. Initial
training should include best practices and hands-on
exercises for inputting natural-language prompts
into the tools, often called prompt engineering.
In addition, workshops should equip developers
with an overview of generative AI risks, including
any industry-specific data privacy or intellectual-
property issues and best practices in reviewing
AI-assisted code for design, functionality,

complexity, coding standards, and quality, including
how to discern good versus bad recommendations
from the tools.

For developers with less than a year of experience,
the research also suggests a need for additional
coursework in foundational programming
principles—for example, coding syntax, data
structures, algorithms, design patterns, and
debugging skills—to achieve the productivity gains
observed among those with more experience.

Once developers begin using the tools in their
day-to-day activities, their skill development
should continue with ongoing coaching from senior
team members and community building, such as
dedicated online channels and team meetings to
share practical examples. This effort can foster
continuous learning, ensure best practices are
shared throughout the organization, and identify
any issues early. In our research, participants
noted that as they generated more prompts and
shared learnings with each other, the quality of their
prompts improved.

Pursue advanced use cases beyond code
generation
While there is tremendous industry buzz around
generative AI’s ability to generate new code, our
research shows that the technology can have
impact across many common developer tasks,
including refactoring existing code, which can
enable leaders to make a dent in traditionally
resource-intensive modernization efforts that
often get sidelined due to lack of time. For example,
if generative AI–based tools help teams rapidly
refactor a legacy application, the teams can redirect
their time to closing out a backlog of improvements
that have languished on their company’s to-do list
or improving architectural performance across the
entire software platform.

Deploying new use cases requires a careful
evaluation of tooling, as a flurry of new generative
AI tools are coming to market and different tools
excel in different areas. Our research shows that
using multiple tools can be more advantageous than
just one. During our study, participants had access

6 Unleashing developer productivity with generative AI

to two tools, one that used a foundation model
trained to respond to a user’s prompt and another
that used a fine-tuned foundation model trained
specifically on code. Participants indicated that the
former, with its conversational capabilities, excelled
at answering questions when they were refactoring
code. The latter tool, they said, excelled at writing
new code, thanks to its ability to plug into their
integrated development environment and suggest
code from a descriptive comment they noted within
their document. However, when developers used
both generative AI tools within a given task, as
opposed to only one, they realized an additional time
improvement of 1.5 to 2.5 times.

Plan for skill shifts
As developers’ productivity increases, leaders will
need to be prepared to shift staff to higher-value
tasks. Baselining productivity and then continuously
measuring improvement can reveal new capacity as
it emerges across the organization. Leaders should
consider how to use their additional capacity and
what upskilling is needed to close any skill gaps that
may emerge. They might, for example, apply their
talent to enable new business expansion or update
existing products more often. These assignments
would require developers to build new skills in
software design and architecture.

Provide risk controls
New data, intellectual-property, and regulatory risks
are emerging with generative AI–based tools. Given
the speed at which developers can write or update
code with these tools, it’s easy to imagine how any
problems from, say, a coding error or data issue
could snowball. As leaders update governance, they
should consider potential risks such as the following:

	— data privacy and third-party security, such as the
potential for developers to expose confidential
information when prompting the tools

	— legal and regulatory changes, including
changes to the European Union’s General
Data Protection Regulation (GDPR) and other
regulations limiting the use of the technology

	— AI behavioral vulnerabilities, including the
impacts if bad actors plant malicious or
malfunctioning code in the public domain
to influence the training of large language
models or infiltrate organizations

	— ethics and reputational issues that could arise
from using a snippet of code copyrighted by
another entity or amid debates on ownership
of code the tools generate

	— security vulnerabilities that can crop up in
AI-generated code and put systems (and the
organization) at risk

Generative AI is poised to transform software
development in a way that no other tooling or
process improvement has done. Using today’s
class of generative AI–based tools, developers
can complete tasks up to two times faster—and
this is just the beginning. As the technology
evolves and is seamlessly integrated within
tools across the software development life
cycle, it is expected to further improve the speed
and even quality of the development process.
But as our research shows, tooling alone is
not enough to unlock the technology’s full
potential. A structured approach encompassing
generative AI training and coaching, use case
selection, workforce upskilling, and risk controls
can lay a solid foundation for organizations to
pursue generative AI’s promise of extraordinary
productivity and unparalleled software
innovation.

Copyright © 2023 McKinsey & Company. All rights reserved.

Begum Karaci Deniz is a consultant in McKinsey’s Bay Area office, where Chandra Gnanasambandam is a senior partner
and Martin Harrysson, Alharith Hussin, and Shivam Srivastava are partners.

The authors wish to thank Ishita Agarwal, Monica Chandni, Elsie Jiang, Caroline Moody, Akhila Nandgopal, Diego Guerra
Orozco, Sia Peng, Vanessa Randall, Shriya Ravi Shankar, Aakanksha Srinivasan, and Olivia Zhang for their contributions to
this article.

7Unleashing developer productivity with generative AI

