
2

Most organizations deploy multiple teams to

develop and maintain software applications, a

function that’s known as application development

and maintenance (ADM). Often these teams

are organized around projects or application

expertise. But demand for application work usually

doesn’t sync with such fixed team structures.

The unbalanced flow means that some project

groups may find themselves less busy—while

others can barely keep up with the influx. The

challenges many face are likely to rise: demand

for ADM services is expected to grow at an annual

rate of 4 to 5 percent through 2013 as more

products, processes, and functions become auto-

mated or application driven.

The ADM department of one large high-tech

company, for instance, found itself in perennial

catch-up mode. Business in the services division

was booming, but release rates for applications

had fallen off steeply. With deliverables pending at

major accounts, developers faced constant pres-

sure to boost productivity. To quicken the pace, man-

agers parceled out jobs on a first-come, first-

served basis. The department’s credo was that if

you had the skill, you picked the job off the pile

and got to work. In practice, quick-turn projects

often got stuck in the pipeline while developers—

sometimes with only basic skills in the required

programming language—worked through the kinks

of bigger, more complex tasks. Burnout and

rising attrition exacerbated staffing constraints.

As ADM organizations such as this one muscle their

way through steadily expanding workloads, the

cracks are not only becoming evident but are also

A better way to manage application
development and maintenance work

Inflexible staffing models are straining application developers’ ability to

keep up with rising demand.

Feature article

B
il
l
B

u
tc

h
e
r

Daniel Alsén,

Rajeev Jain, and Krish

Krishnakanthan

3

affecting broader organizational performance.

Misaligned workflows mean that staff must often

sprint back and forth between projects to meet

escalating priorities. That scrambling creates spot

shortages in capacity and makes it hard to esti-

mate project time lines. The result: cost and dead-

line overruns are increasingly the norm.

One way to ease these capacity constraints is to

restructure ADM work fundamentally. That requires

breaking down projects and sorting them by com-

plexity, skill, and duration, as well as abandoning

traditional account or program silos. This article

describes how companies can meet that goal.

Hitting the wall

Large ADM service organizations often divvy

up application work by client or account, but these

traditional staffing models can aggravate capac-

ity constraints. Workload volumes often swing dra-

matically from one account to another, thus

lumping some staff members with a half dozen or

more projects while others manage just two or

three. Technical-development work (for instance,

projects involving Java, C++, Web/HTML, and

mainframe programming) is frequently siloed, even

though many developers have crossover skills

that could ease the pressure on overtaxed teams.

Within project teams, a constant stream of requests

can reduce workflow management to primitive

firefighting as developers manage assignments

spanning a range of time horizons and design

complexity. Overlapping deadlines and frequent

project interdependencies can make it hard for

developers to see assignments through to comple-

tion without being interrupted. Experienced

programmers and designers who can churn out

complex application algorithms and under-

take demanding development tasks find them-

selves consumed instead with a series of less dif-

ficult but urgent projects.

These problems can make delivery schedules a

guessing game. In the absence of defined workloads,

even helpful estimation techniques (such as

story, use case, or function points) may be of limited

use.1 Many managers describe the process as

“working blind.”

A new pathway to managing
capacity

Our client work shows that ADM groups can

gain greater control and visibility if they break

down projects by complexity, duration, and

skill and then aggregate programming silos into

new, integrated clusters.

Sort work by skill and complexity
Many organizations normally assign beginning-

to-end responsibility for each application to a spe-

cific customer team. We find, however, that they

would often see faster results by giving simple, quick-

turn elements to a large, integrated staffing pool

and routing complex tasks to a smaller group of spe-

cialists. That structure lets the larger group nar-

row its mission to maximizing throughput (that is,

to cranking things off the assembly line faster)

and frees the smaller group to concentrate on “long

cell” jobs—for instance, ongoing development

or maintenance efforts requiring more features,

customization, and expertise and spanning a

longer time horizon.

Backing this idea is the fact that more than 80 per-

cent of applications in the United States today

involve small, low-complexity tasks (defined as

having fewer than ten function points) and

require relatively basic skills to complete (Exhibit 1).

By using staffers accordingly—assigning 70 to

1 Story points draw on roundtable
discussions to estimate an
application’s size and time to
complete. Use case points
apply a formula-based approach
to do the same thing. Function
points categorize user
requirements by their relative
complexity and by type of
function to estimate a project’s
size and duration.

Takeaways
By splitting application work

by client or account,

traditional ADM staffing

models create silos that

aggravate capacity

constraints.

For better results,

break projects down by

complexity, duration,

and skill.

Assign simple, quick-turn

elements to a large,

integrated staffing pool and

route complex tasks to a

smaller group of specialists

to better align resources

with the demand curve.

Aggregate programmers

who have the same or

related programming-

language skills into larger

clusters that can operate

across internal company

borders for additional

efficiencies.

4 McKinsey on Business Technology Number 25, Winter 2012

80 percent of them to low-complexity tasks and

the remainder to more difficult ones, for instance—

managers can better align resources with the

demand curve. That approach also matches the

typical skill distribution in most ADM organi-

zations. In our work with clients, expert employees

typically make up about one-third of the total

staffing pool.

Using this approach, one ADM organization found

a way to ease what had become a constant backlog

of demand. By allocating low-complexity work

to junior staff, the group freed specialists to tackle

more complex assignments. Separating work by

complexity also helped it fine-tune delivery esti-

mates. The group generally expected to complete

tasks with fewer than ten function points—about

80 percent of project volume—in no more than

four weeks (and sometimes in less than two). More

difficult projects had correspondingly longer

timelines.

Create integrated programming clusters
ADM groups can gain additional efficiencies by

aggregating programmers who have the same or

related programming-language or software skills

into larger clusters (that is, centers of excellence)

that can operate across internal company bor-

ders. That kind of bundling can improve scale by

making it easier to move resources around

as some projects wind down and others begin.

One ADM manager, for example, inventoried the

employee skill base and was surprised to find

that he could reassign a large cross section of pro-

grammers to form such a shared-services team.

Rather than having a number of Java and COBOL

teams working in parallel for separate business

lines, he reasoned, it would make more sense to

combine resources, providing for greater sharing

of skills and helping to balance tasks. Taking that

approach, the manager pooled 11 fragmented

programming silos into four integrated system-

Estimated level of complexity in US application software, 2010

1

10

100

1,000

10,000

81% of total

100,000

1,000,000

Exhibit 1
More than 80 percent of applications in the United States
consist of small, low-complexity tasks.

MoBT 2011
IT developers
Exhibit 1 of 2

 Source: “Using function point metrics for software economic studies,” Jan 27, 2010, presentation by Capers Jones

Size of application,
function points

Number of applications,
total = 1,173,965

630,000

320,000

131,500

70,500

21,750

185

30

5A better way to manage application development and maintenance work

development clusters, leaving only Web/HTML

programmers and a catch-all “other” bucket of devel-

opers to stand alone. Reducing the number of

disparate work streams created greater visibility into

the activity of the ADM organization, allowing

it to assess the relative complexity and duration of

different jobs and to assign resources accordingly

(Exhibit 2).

What ADM leaders should do

In our experience, the following four steps can guide

executives in realigning their capacity.

 • Identify the complexity and time horizons of

incoming demand. Filter and analyze incoming

work to identify recurring and standard tasks

across groups and domains. Using this analysis,

create a table (complexity catalog) that describes

the typical resolution time and complexity

level for each task. This table can be used in com-

bination with team “poker planning,”2 in which

joint consensus estimates are created using story

points. The end result is a clearer view of the

incoming work by complexity.

 • Identify the work and skill sets most commonly

in demand. Conduct discussions with leaders

of development teams to determine the key func-

tional, application, technical, and supporting

skills required to manage incoming demand. To

capture shifts in resource needs, include a

review (based on technologies used) of future

development road maps.

 • Use a skill matrix to chart baseline capacity

and identify gaps. To improve standards through-

out your company, conduct an inventory of

skills in which employees rate theirs on a clearly

defined scale from 0 (no skills) to 4 (sufficient

skills). Such an inventory will help you determine

where additional training is needed to broaden

the skill base and to create a larger pool of staffers

equipped to tackle high-demand projects.

 • Pool resources. Create resource pools that group

related programming skills across divisions

and groups. Assign tasks by complexity to increase

resource utilization and to achieve scale

effects. Use the incoming-demand analysis and

the skill matrix to balance the workloads of

full-time employees.

The high-tech company mentioned at the outset of

this article used this approach to get out from the

corner it had wedged itself into by taking on more

jobs than its ADM structure could manage. It

began by dissolving smaller account teams and

moving those resources into larger staffing pools.

2 Poker planning is a consensus-
based approach to estimating
the complexity of projects.

One ADM organization found a way to ease
what had become a constant backlog of demand.
By allocating low-complexity work to junior
staff, the group freed specialists to tackle more
complex assignments.

6 McKinsey on Business Technology Number 25, Winter 2012

compartmentalized so easily. Junior staff worried

that the new system would assign them to work

on programs where they would use only the most

basic skills. Managers feared that quality issues

would skyrocket and that projects would return to

square one when they came back for rework.

To get around those concerns, the project leaders

dug out ticket data from the previous 12 months

Within the pools, it created two work groups: one

focused on processing simple tasks (file cleanup

and password resets), the other charged with more

complex assignments (such as performance

tuning and coding changes).

Managers and employees balked at the pro-

posed changes initially. Most were skeptical about

the idea that specific applications could be

Cluster-
focused
experts

Pools of
practitioners

MoBT 2011
IT developers
Exhibit 2 of 2

1 Capture demand by
program/technology,
volume in hours of
incoming work for past
6 to 12 months

2 Develop 5 to 10 application
clusters, cross-functional and
cross-business

3 Segment by
complexity

4 Estimate, align
resources
based on
demand

High complexity Medium to low complexity

C++

COBOL

Java
(CORBA)

Oracle

Business group 2

Business group 1

J2EE (WS)
Data
warehouse
CICS/JCL

Web/HTML

Business group 3

.NET

Java

JBoss

COBOL

DB2

J2EE—JBoss, Java,
CORBA, WS
Mainframe—COBOL,
CICS, JCL

Databases—DB2,
Oracle

.NET and C++

Web/HTML

Other J2EE

Mainframe

Databases

.NET and C++

Web/HTML

Other

J2EE

Mainframe

Databases

.NET and C++

Web/HTML

Other

Potential clusters

High

Medium to low

Exhibit 2
Fragmented programming silos can be transformed into
integrated system-development clusters.

7

and used this information to show that nearly

70 percent of all incoming work required little or no

specific application knowledge. The majority of

tickets concerned simple elements, such as system

restart and report generation—tasks that required

only basic Unix scripting and Structured Query

Language (SQL). The remaining 30 percent went

to long-cell groups that could handle more

complex projects.

To gain even more fine-grained information

on the expertise of the staff, managers conducted

a skill inventory, using a five-point scale to rank

employees on a variety of technical and business

capabilities. Staff members with the highest

rankings were assigned to the complex-work tier,

and the rest to lower ones—a change that gen-

erated 23 percent more capacity. To avoid the inter-

ruptions caused by cycling work back and forth

between groups, the short- and long-cell teams

received different deliverables. Before the

change, one team might be tasked with developing

a new user interface from start to finish. Under

the new arrangement, the short-cell team would

work through a series of small, individual

subcomponents—for instance, changing the color

of a screen from yellow to blue. Meanwhile,

the long-cell team would focus on more intricate

requirements, such as creating a new billing format.

That structure made it easier to estimate delivery

schedules. Managers broke overall projects into

three waves of work, each scheduled to take four

weeks. Because teams worked on discrete ele-

ments, quick-turn fixes could be released as they

became available rather than getting stuck

waiting for a whole project to be delivered “all in

one,” as before. Customers preferred the new

system; knowing that they would receive their blue

screen in October and their new billing system

in January made it easier for them to plan. Although

it took the company four months to reorganize,

improvements began after only nine or ten weeks.

With capacity better balanced, quality also

improved. Maintenance and development errors

are now down by 12 to 15 percent.

ADM organizations are on the hook to process higher

volumes of work at a faster clip, so they must move

away from individual project teams to aggregated

clusters that facilitate better matchmaking

between work and worker. That approach can lift

the blindfolds from managers, giving them a

chance to home in more closely on performance

metrics that can improve costs, times to market,

and customer satisfaction.

A better way to manage application development and maintenance work

Daniel Alsén (Daniel_Alsen@McKinsey.com) is an associate principal in McKinsey’s Stockholm office,

Rajeev Jain (Rajeev_Jain@McKinsey.com) is a consultant in the Chicago office, and Krish Krishnakanthan

(Krish_Krishnakanthan@McKinsey.com) is a principal in the New York office. Copyright © 2012 McKinsey

& Company. All rights reserved.

	cov.pdf
	part1
	part 2b

